Some extremely amenable groups

نویسنده

  • Thierry Giordano
چکیده

A topological group G is extremely amenable if every continuous action of G on a compact space has a fixed point. Using the concentration of measure techniques developed by Gromov and Milman, we prove that the group of automorphisms of a Lebesgue space with a non-atomic measure is extremely amenable with the weak topology but not with the uniform one. Strengthening a de la Harpe’s result, we show that a von Neumann algebra is approximately finite-dimensional if and only if its unitary group with the strong topology is the product of an extremely amenable group with a compact group. Quelques groupes extrêmement moyennables Résumé — Un groupe topologique G est extrêmement moyennable si toute action continue de G sur un espace compact possède un point fixe. En utilisant les techniques de concentration de mesure développées par Gromov et Milman, nous démontrons que le groupe des automorphismes d’un espace de Lebesgue avec une mesure diffuse est extrêmement moyennable s’il est muni de la topologie faible, mais ne l’est pas avec la topologie uniforme. Si M est une algèbre de von Neumann, nous montrons en utilisant un résultat de P. de la Harpe que M est approximativement de dimension finie si et seulement si son groupe unitaire (muni de la topologie forte) est le produit d’un groupe compact et d’un groupe extrêmement moyennable. 0 Nom de la personne qui doit corriger les épreuves: Thierry Giordano Addresse: Département de mathématiques et statistique, Université d’Ottawa, 585 King Edward, Ottawa, Ontario, K1N 6N5, Canada N de téléphone: +1-613-562-5800 ext. 3514. N de télécopieur: +1-613-562-5776. Courier électronique: [email protected]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CHARACTERIZATIONS OF EXTREMELY AMENABLE FUNCTION ALGEBRAS ON A SEMIGROUP

Let S be a semigroup. In certain cases we give some characterizations of extreme amenability of S and we show that in these cases extreme left amenability and extreme right amenability of S are equivalent. Also when S is a compact topological semigroup, we characterize extremely left amenable subalgebras of C(S), where C(S) is the space of all continuous bounded real valued functions on S

متن کامل

A CHARACTERIZATION OF EXTREMELY AMENABLE SEMIGROUPS

Let S be a discrete semigroup, m (S) the space of all bounded real functions on S with the usualsupremum norm. Let Acm (S) be a uniformly closed left invariant subalgebra of m (S) with 1 c A. We say that A is extremely left amenable if there isamultiplicative left invariant meanon A. Let P = {h ?A: h =|g-1,g | forsome g ?A, s ?S}. It isshown that . A is extremely left amenable if and only ...

متن کامل

Some Extremely Amenable Groups Related to Operator Algebras and Ergodic Theory

A topological group G is called extremely amenable if every continuous action of G on a compact space has a fixed point. This concept is linked with geometry of high dimensions (concentration of measure). We show that a von Neumann algebra is approximately finite-dimensional if and only if its unitary group with the strong topology is the product of an extremely amenable group with a compact gr...

متن کامل

Recent Developments in Finite Ramsey Theory: Foundational Aspects and Connections with Dynamics

We survey some recent results in Ramsey theory. We indicate their connections with topological dynamics. On the foundational side, we describe an abstract approach to finite Ramsey theory. We give one new application of the abstract approach through which we make a connection with the theme of duality in Ramsey theory. We finish with some open problems. 1. Ramsey theory and topological dynamics...

متن کامل

Automorphism groups and Ramsey properties of sparse graphs

We study automorphism groups of sparse graphs from the viewpoint of topological dynamics and the Kechris, Pestov, Todorčević correspondence. We investigate amenable and extremely amenable subgroups of these groups using the space of orientations of the graph and results from structural Ramsey theory. Resolving one of the open questions in the area, we show that Hrushovski’s example of an ω-cate...

متن کامل

-

In this paper we give some characterizations of topological extreme amenability. Also we answer a question raised by Ling [5]. In particular we prove that if T is a Borel subset of a locally compact semigroup S such that M(S)* has a multiplicative topological left invariant mean then T is topological left lumpy if and only if there is a multiplicative topological left invariant mean M on M(S)* ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001